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1. INTRODUCTION 
Many safety-critical systems rely on software to achieve their purposes. The number 
of such systems increases as additional capabilities are realized in software. Mini- 
turization  and processing improvements have enabled the  spread of safety-critical 
systems from nuclear and defense applications to  domains as diverse as implantable 
medical devices, traffic control,  smart vehicles, and interactive  virtual environments. 
Future technological advances and consumer markets can be expected to  produce 
more safety-critical applications. To meet this  demand is a challenge. One of the 
major findings in a recent report by the President’s Information Technology  Advi- 
sory  Committee was, “The Nation depends on fragile software” [Committee 19991. 

Safety is a system problem [Leveson  1995; McDermid 19961. Software can con- 
tribute  to a system’s safety or can compromise it by putting  the system in a dan- 
gerous state. Software engineering of a safety-critical system thus requires a clear 
understanding of the software’s role in,  and  interactions  with, the system. This 
report describes the current state  in software engineering for safety and proposes 
some directions for needed work  in the area. 

The work described in this paper was carried out at the  Jet Propulsion  Laboratory, California 
Institute of Technology, under a contract  with the National Aeronautics and Space Administra- 
tion.  finding was provided under NASA’s Code Q Software Program Center  Initiative UPN 
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The next section of the  report gives a snapshot of six key areas  in state-of-the-art 
software engineering for safety: Hazard analysis, Safety requirements specification 
and analysis, Designing for  safety, Testing, Certification and standards, and Re- 
sources. The section provides a overview of the central ideas and accomplishments 
for each of these topics. 

Section 3 of the  report describes six thrusts for future work: Further integration of 
informal and formal methods, Constraints on safe  reuse  and  safe product families, 
Testing and evaluation of safety-critical  systems,  Runtime  monitoring,  Education, 
and Collaboration with related fields. The criteria used to  choose the problems in 
section 3 are  that  the problems are  important  to achieving safety in actual systems 
(i.e., that people will  use the results to  build safer systems), that some approaches 
to solving the problems are indicated  in the  literature,  and  that significant progress 
toward  solutions  appears feasible in the next decade. 

The  report concludes with a brief summary of the two central  points of the report: 
(1) that software engineering for safety must continue to  exploit advances in other 
fields of computer science (e.g., formal methods, software architecture) to  build 
safer systems, and (2) that wider  use of safety techniques awaits better integration 
with industrial development environments. 

2. CURRENT  STATE 
This section provides a snapshot of the current state in six central  areas of software 
engineering for safety. 

2.1 Hazard Analysis 
Since hazard  analysis is at the core of the development of safe systems [Leveson 
19951, we begin with a brief discussion of its use and  the techniques used to  imple 
ment it in practice. System-level hazards  are states  that can lead to  an accident. 
An accident is  defined as an unplanned event that results in “death, injury, illness, 
damage to  or loss of property, or environmental harm” pushby 19941. Hazards 
are identified and analyzed in terms of their criticality (severity of effects) and risk 
(probability of occurrence). The results of the system-level analysis are used to  
make decisions as to which hazards to address. Some hazards are avoidable, so can 
be eliminated (e.g., by changing the system design or the environment in  which the 
system operates), while other unacceptable hazards  cannot be avoided and must 
be handled by the system. System safety requirements to  handle the unavoidable 
hazards are  then specified. 

Further investigation determines which software components can  contribute to  
the existence or prevention of each hazard. Often, techniques such as fault  tree 
analysis,  failure modes, effects, and criticality analysis (FMECA),  and HAZOP 
are used to  help in this determination [DeLemos et al. 1995; Ippolito  and Wallace 
1995; Leveson 1995; Raheja 1991; Storey 1996; Sullivan et al. 19991. Combinations 
of forward analysis  methods  (to identify the possibly hazardous consequences of 
failures) and backward analysis methods (to investigate whether the hypothesized 
failure is credible in the system) have proven especially effective  for safety analyses 
[Maier 1995; McDermid et al. 1995; Lutz  and Woodhouse 19971. Safety require- 
ments for the software are derived from the resulting descriptions of the software’s 
behavior. These software safety requirements act as constraints  on the design of the 
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system. Software may  be required to prevent the system from entering a hazardous 
state (e.g.,  by mutual exclusion  or timeouts), to detect a dangerous state (e.g., an 
overpressure), or to move the system  from a dangerous to a safe state (e.g.,  by 
reconfiguration) [Lutz 19961. 

The design specification is subsequently  analysed to  confirm that  it satisfies the 
safety-related software requirements. During  implementation and  testing, verifica- 
tion continues to  assure that  the design  is correctly implemented so as to  remove 
or mitigate hazards. The delivered system is validated against the safety-related 
requirements, with oversight continuing during  operations to  assure  that  the re- 
quirements were adequate. In practice the  hazard analysis is usually iterative with, 
for example,  additional safety requirements being  discovered during design or in te  
gration  testing. 

Hazard analyses are also useful  for  helping prioritize requirements to focus re- 
sources (e.g., testing) on the components or features that offer the  greatest vulner- 
ability for the system. As we  will see  below, hazard analyses often guide the choice 
of which aspects or subsystems merit more intense scrutiny via formal  methods. 

2.2 Safety  requirements  specification  and  analysis 

2.2.1 Shared problems. Many of the problems involved  in identifying, specify- 
ing, and verifying requirements  are  shared by the requirements engineering of non- 
safety-critical systems. For example, if  we look at Zave’s 1997 classification of 
research efforts in  requirements engineering, the work she identifies as needing to  
be done will  improve the software engineering of safety-critical systems [Zave 19971. 
The  three  major categories of the needed research are: (1) problems of investigating 
the goals, functions, and  constraints of a software system, and (2) problems of spec- 
ifying software system behavior, (3) problems of managing evolution of systems and 
families of systems. Advances  in  each of these requirements engineering areas offers 
opportunities for better elicitation, understanding, specification, reasoning about, 
and control of the relationships between hazards  and software safety requirements. 
The reader is referred to  Bashar Nuseibeh’s article elsewhere  in this volume for 
further information  on  these  shared issues in requirements engineering. 

2.2.2 Advances. Extensive investigation into  the specification and analysis of re- 
quirements for safety-critical systems  has been performed in the  last decade. This 
is especially true in the  area of formal  methods [Clarke and  et al. 1996; Cullyer 
1991; Dutertre  and Stavridou 1997; Heimdahl and Leveson 1996; Rushby 19951. 
The use of formal specification is described by  Axel  van  Lamsweerde  elsewhere  in 
this volume, so only highlights of its use  for safety-critical systems are given  here. 

One  motivation for  specifying requirements formally is that some  notations make 
review, design, implementation, and development of test cases easier and more 
accurate.  Formal  documentation of requirements  has also been  shown to improve 
the quality of the final product [Courtois and  Parnaa 19931. Tabular  notations, for 
example, are familiar to  engineers and  supported by many tool environments. 

Another  motivation for specification of requirements in a formal  notation is that 
it allows formal analysis to investigate whether  certain safety properties  are pre- 
served. For example, Dutertre  and Stavridou specify an avionics system and verify 
such safety requirements as, “If the backup  channel is in control and is in a safe 
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state,  it will stay in a safe state,”  [Dutertre  and  Stavridou 19971. Automated checks 
that  the requirements are internally consistent and complete (i.e., all data  are used, 
all states  are reachable) is often then available. Executable specifications allow the 
user to  exercise the safety requirements to  make sure that they  match  the  intent  and 
the reality. Interactive theorem provers can  be used to  analyze the specifications for 
desired safety-critical properties. As an example, on one recent project  there was 
concern about whether a low-priority fault-recovery routine could be  preempted 
so often by higher-priority fault-recovery routines that  it would  never complete. 
Because the requirements were formally specified, Lutz  and Amp0 were able to  
demonstrate using an interactive theorem prover that  this undesirable situation 
could, in fact,  occur, and remedy it before implementation [Lutz and Amp0 19941. 
Model checkers can  be used to investigate whether any combination of circum- 
stances represented in the specification can lead the system to  enter an undesirable 
state [Holzmann 19971. 

Significant advances have been made in methods for translating system safety 
requirements to  software requirements. Historically, the discontinuity between sys- 
tem  and software safety requirements has been a problem. McDermid has criticized 
the typical safety case for a software-based system in this  regard. He notes that  too 
often a safety case first identifies which software components are critical, using clas- 
sical safety analyses, and  then argues that  the likelihood of software contributing 
to  a hazard is acceptably low  by referring to  the development process rather than 
whether the software product satisfies the system safety requirements WcDermid 
et al. 19951. 

SpecTRM, a toolset  built by  Leveson and her colleagues to  support  the devel- 
opment of embedded systems, was designed to reduce the discontinuity between 
system and  the software requirements. It uses a formal specification language (built 
on  their  earlier RSML) to  specify a system as a collection of communicating, hierar- 
chical state machines which can  then be automatically checked for consistency and 
some completeness properties. The toolset  tries to  reduce the  gap between system 
design and software requirements by reflecting how people actually use  specifica- 
tions to think  about a complex system. For example, the interface between the 
user and  the controller (e.g., the displays) is explicitly modeled, and  startup values 
(a frequent source of faulty assumptions) automatically  default to  the safer value 
of “unknown” [Heimdahl and Leveson 1996; Leveson et al. 19991. 

2.3 Designing  for  Safety 
Substantial overlap exists between the design techniques used for safety-critical 
systems and those used for other  critical or high-consequence systems. Rushby has 
provided an excellent discussion of the similarities and differences among the safety 
engineering, dependability, secure systems, and real-time systems approaches  and 
assurance techniques in [Rushby 19941. The description in the next two paragraphs 
uses definitions and insights from his paper. 

A dependable  system is one for  which reliance may justifiably be placed on  certain 
aspects of the quality of service that  it delivers. Dependability is thus concerned pri- 
marily with  fault  tolerance (i.e., providing an acceptable level of service even when 
faults occur). Some of the design mechanisms for dependable systems are useful 
for safety engineering, but  there is often a tradeoff in terms of tightened coupling 
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(increased interactions) and additional software complexity. Thus,  dependability 
mechanisms may in a particular  application either enhance or reduce safety. 

Safety engineering focuses on the consequences to be avoided and explicitly con- 
siders the system  context. Sometimes, as Rushby points  out,  there is no safe al- 
ternative to  normal service, in which case, the system must be  dependable to  be 
safe. Real-time systems typically must be  fault-tolerant  and often involve timing- 
dependent behavior that can lead to hazards if it is compromised. Secure systems 
concentrate on preventing unauthorized disclosure of information, information in- 
tegrity, and denial of service, and on assuring noninterference (e.g., via a covert 
channel). As will be discussed in Section 3, some design techniques used to  develop 
secure or survivable systems have applications in safety-critical systems. 

In hardware  systems, redundancy and diversity are  the most common ways to 
reduce hazards. In software, designing in safety may also involve preventing hazard8 
or detecting and  controlling  hazard8  when  they  occur. Hazard prevention design 
includes mechanisms such as hardware lockouts to protect  against software errors, 
lockins, or interlocks, watchdog timers, isolation of safety-critical modules, and 
sanity checks that  the software is behaving as expected. Often such checks are 
assertions stating either preconditions on the  data input  (that  it is of the required 
type or in the required range), postconditions on the  data  output, or invariants 
that a dangerous state continues to be avoided. 

Hazard  detection  and control includes mechanisms such as fail-safe designs, self- 
tests, exception-handling, warnings to operators or users, and reconfigurations 
[Leveson 19951. Fault-tolerance mechanisms for detecting and correcting known 
faults in distributed, message-passing systems is a well-developed area; see, e.g., 
[Arora and Kulkarni 1998; Gardiner 1998; GMner 19991. Active protection (mon- 
itoring and response) often involves additional software. 

For software, there  are several obstacles to  the goal of designing safe systems. 
Design  tradeoffs. As was mentioned previously, design decisions usually involve 
tradeoffs between safety and  other desirable product  attributes. Design methods for 
fault-tolerance  can  contribute to safer systems, e.g., by providing predictable  timing 
behavior, but  they can also create  additional  interactions between components and 
levels of the system (e.g., to coordinate recovery from a hazardous state), which 
is undesirable in a safety-critical system [Lutz and Wong 19921. Furthermore, as 
Leveson points out, “often the resolution of conficts between safety constraints and 
desired functionality involves moral, ethical, legal, financial, and societal decisions; 
this is usually not a purely technical, optimization decision Feveson 19911. As 
more safety-critical applications  are  built, commercial and marketing issues such as 
timeto-market  and liability may also become larger factors in design decisions. 

Vulnerability to simple  design  errors. We tend to think of the problem of 
designing in safety as one of managing complexity, but many accidents have simple 
causes. As an example of a simple error with a large consequence, consider the 
recent loss of the Mars Climate  Orbiter spacecraft [NASA Mars  Climate  Orbiter 
Mishap Investigation Board 19991. The root cause of the accident was a small 
error, i.e.,  use of an English measurement where the software required a metric 
measurement. The defect (type  mismatch) was straightforward, well-understood, 
easy to prevent in design, and easy to  catch  in  testing. However, the sensitivity 
of the system to this  error was very  high. Parnas points  out that in conventional 
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engineering, every design is characterized by a tolerance, such that being within the 
specified tolerance is adequate. The underlying assumption is that “small errors 
have small consequences.” In software, this is not true. “NO useful interpretation 
of tolerance is known  for software” [Parnas et al. 19901. The limits to  our  ability 
to  develop safe systems is thus related to  an innate  characteristic of software. 

Limited use of known design  techniques A recent incident provides a dou- 
ble illustration of the point that known, good-practice, design techniques for safe 
systems are  too often ignored. First,  in July, 1998, the Aegis  missile cruiser, USS 
Yorktown, was crippled by the  entry of a zero into a datafield, causing the  database 
to  overflow and crash all LAN consoles and miniature remote terminal  units.  Pro- 
tection  against such bad data is a known  design feature that was not used. Second, 
the reported, corrective maintenance was not to  fix the design, as would be ex- 
pected, but  to retraining the  operators  “to bypass a bad data field and change the 
value if such a problem occurs again” [Slabodkin 19981. It may be that wider  use 
of known, safedesign  features can be encouraged by quantification of the cost of 
such failures. Strigini  has suggested that our inability to  quantify the  return on 
investment from methods to improve safety limits the use of those  methods [Strigini 
19941. 

2.4 Testing 
The role of testing is critical  both to  the development of safe systems  and to  their 
certification. Safety requirements generated  during system and software hazard 
analysis are tracked  into  testing to validate that  the as-built system satisfies them. 
Since safety requirements often describe invariant conditions that must hold in all 
circumstances, testing often verifies the fault-tolerant  aspects of the software. Tests 
can also demonstrate that  the software responds appropriately to  some anticipated 
or envisioned, abnormal  situations. Test cases often emphasize boundary conditions 
(startup, shutdown) or anomalous (failure detection  and recovery) conditions, since 
hazards  can  result from improper handling of these vulnerable states. Weyuker has 
incorporated the consequence of failure into a testsuite generation algorithm, in 
order that  states with low probability of execution but severe effects on the system 
will be  tested [Weyuker 19961. 

Assumptions  about  environment. Unsafe systems can  result from incorrect 
assumptions about  the environment in which the system will operate.  This is 
a constant difficulty in developing spacecraft software, for example, since many 
aspects of the deep-space environment (vibration,  radiation,  etc.) are imperfectly 
known prior to  operations. Correctly identifying the point at which a hazardous 
state will be  entered and  the  set of adjustments that will return  the system to  a safe 
state is complicated by these environmental uncertainties. Precise environmental 
modeling is a great  asset in developing such systems and in determining realistic, 
operational  testcases  [Tsai et al. 19981. 

Assumptions  about users. Similarly, incorrect assumptions about  the user or 
operator of a system can lead to an unsafe system. For example, in testing a ride for 
a software-generated, virtual reality amusement park, Disney discovered that users 
were having problems “flying” their magic carpet [Pausch et al. 19961. Some users 
felt that  they were upside down  when they weren’t, got dizzy, or even fainted. The 
software allowed so much freedom in navigating the carpet that users sometimes 
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became disoriented. Significant human  factors research tries to  establish  accurate 
assumptions and benchmarks for such systems. However, it was in  testing that  the 
mismatch with reality was  discovered. 

Assumptions  about  operations. While it was in the context of spacecraft, 
not magic carpets, that  the following remark was made, it sums  up the  tight link 
between testing  and use  needed  for a safe system: “Test like  you  fly,  fly  like  you 
test” [Dumas and Walton 19991. The  statement also means that operations must 
be  constrained by the scope of the tests. The implications of this  limit on safe oper- 
ation for reuse and evolutionary software is discussed below. To sum  up, especially 
in safety-critical systems, “deep knowledge and experience with the application 
area will be needed to determine the distribution from which the  test cases should 
be drawn” parnas  et al. 19901. This is  especially true for the identification of 
hazardous scenarios for testing. 

It has been proven that testing is not a sufficient condition for a safe system 
[Butler and Finelli 1993; Littlewood and Wright 19971. It is infeasible to  test 
a safety-critical system enough to quantify its dependability. How much testing, 
though, is enough for safety-critical systems? Littlewood and Wright have provided 
a conservative, reliability- based (Bayesian) approach to  calculate the number of 
failure-free tests following a failed test [Littlewood and Wright 19971. Measuring 
and modeling software reliability during  testing  and  operations, e.g., through  error 
profiling, is an active research area,  although the accuracy and use of reliability 
growth models continue to  be controversial [Parnas  et al. 1990; Voas and Friedman 
19951. 

A recent book, based on technical reports from a research project in the UK, 
describes the testing of safety-related software [Gardiner 19981. One chapter de- 
scribes in detail the requirements for documentation of a safety case in the UK in 
the context of testing. Among the required elements in a safety case is empirical 
evidence of the system’s ability to satisfy the safety requirements. For the  testing 
stage,  this is usually achieved through some combination of explanations as to  how 
the process adequately  detects  and removes defects through  testing, backed up by 
test results. 

2.5 Certification  and Standards 
Certification of the software involves assessing it against  certain  criteria. The prob- 
lem  is that certification criteria for safety-critical systems  are both more complicated 
and less  well-defined than for other software. This is of particular concern in light 
of the growing need for international certification. 

There  are many standards for the development of safety-critical systems. McDer- 
mid cites 100 in 1996 [McDermid 19961. A recent overview from the perspective of 
certification of safety-critical systems is Podriguez-Dapena 19991. The  author also 
provides a list of international software safety initiatives with respect to  standards. 
Among the issues discussed is what  standards  are  appropriate for large, safety- 
critical  systems composed of subsystems from different domains (e.g., a remote 
telemedicine system that uses satellites  and medical software). Often such systems 
contain  COTS (Commercial Off The Shelf) components or subsystems, previously 
certified under different national  authorities, that now must be  integrated and cer- 
tified. 
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There is widespread criticism of current safety standards.  Problems include lack 
of guidance in existing standards, poor integration of software issues with system 
safety, and  the heavy burden of making a safety case for certification [Roddguez- 
Dapena 19991. Some of these same concerns are echoed in  Fenton  and Neil 19981, 
where Fenton critiques the “very wide  differerences of emphasis in specific safety- 
critical  standards.” Recommendations include classifying and evaluating standards 
according to products, processes, and resources, and constructing domain specific 
standards for products. 

2.6 Resources 
Several good books exist that describe techniques used  in software safety engineer- 
ing @aheja 1991; Storey 19961. Leveson’s 1995 book [Leveson 19951 is the  standard 
reference for the field. Another book, focusing on  industrial  practices, [Hermann 
19991, will be released late in 1999. 

There  are extensive resources for software safety on the web. Jonathan Bowen’s 
website, “Safety-Critical Systems,’’ provides links to many of these resources, in- 
cluding newsgroups, mailing lists, courses, publications, conferences, the RISKS 
Forum, and key groups in software safety and  related  areas in academia,  industry, 
and government [Bowen 1 .  These groups include the High Integrity Systems Engi- 
neering Group at the University of York, the Center for  High Assurance Computing 
Systems at the  US. Naval Research Laboratory, NASA groups, the  ESPRIT Prov- 
ably  Correct Systems and  Predictably Dependable Computing Systems projects, 
the Software Engineering Institute,  and  the High Integrity Software System As- 
surance  project at the U S .  National  Institute of Standards,  among  many  others. 
A recent IEEE video on the subject is  “Developing Software for Safety Critical 
Systems,” [Keene 19981. 

3. DIRECTIONS 
This section describes six directions for needed work in software engineering for 
safety that appear to offer useful results in the near  term: Further integration of 
informal and formal  methods,  Constraints  on safe  reuse and  safe product  families, 
Testing and evaluation of safety-critical systems, Runtime  monitoring,  Education, 
and Collaboration  with related fields. 

3.1 Further  integration  of  informal  and  formal  methods 
This  subsection describes three  thrusts  that may provide readier access to  formal 
methods for developers of safety-critical systems. 

Automatic  translation of informal  notations  into  formal  models. Recent 
research in software engineering has correctly emphasized closing the  gap between 
the descriptive notations most widely used by software developers and  the more 
formal methods that allow  powerful automatic analyses. For example, Rockwell 
Avionics used analysis and simulation of a machinecheckable formal model of r e  
quirements for flight guidance mode logic to find latent  errors, many of them signif- 
icant.  One of the identified directions for future work at the end of the  report was 
“engineers wanted a greater emphasis on graphical representation” [Miller 19981. 
Integrating graphical design analysis tools, such as fault  trees, with formal methods 
can enhance safety analyses. (Fault  trees have been formalized as temporal formula 
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in interval logic  [Hansen et al. 19981.) More ambitiously, integration of visual pro- 
gramming environments with formal methods opens up  the possibility of improved 
links between safety requirements and verification of implementation. 

Tabular  representation is another informal notation that has been successfully 
linked to more formal notations in prototype tools. For example, since safety- 
critical software is often specified in a tabular  style,  tool  support  has been developed 
for tabular specification of decision-logic and for automatic checking of certain 
properties of that logic [Heimdahl and Leveson 1996; Hoover et al. 1996; Leveson 
19951. The push to  provide a formal semantics for UML notations and  automated 
translators to  formal languages will also support selective use of formal methods by 
developers p ikk   e t  al. 19981. Continued work to  support rigorous reasoning about 
systems initially described with informal notations,  and to help demonstrate  the 
consistency between informal and formal models, is  needed. 

Lightweight  formal  methods. The use of lightweight formal methods on 
safety-critical systems has  obtained good results in several experimental applica- 
tions but more work  is needed to better  understand when it is appropriate [East- 
erbrook et al. 1998; Feather et al. 1998; Heimdahl and Leveson 1996; Heitmeyer 
et al. 1998; Lutz  and Amp0 19941. Lightweight formal methods refers to  automated 
analysis approaches that involve rapid, low-cost  use of fairly simple formal methods 
tailored to  the immediate needs of a project. This usually means limited modeling, 
flexible use, building on existing products, highly selective scope, and foregoing 
the extended capabilities of theorem provers or model  checkers. In a report on 
three case studies of applying lightweight formal methods for requirements analy- 
sis, it was found that they provided a beneficial addition to existing requirements 
engineering techniques and found important  errors that had  not been previously 
identified [Easterbrook et al. 19981. These case studies used lightweight applications 
of traditional formal methods (SCR*, PVS, SPIN). In  another  critical  application 
Feather  instead used a database as the underlying reasoning engine for automated 
consistency analysis of existing information sources. Feather’s work  is also inter- 
esting  in that he analyses test logs. In  contrast, most applications of lightweight 
formal models so far have been directed  toward requirements analysis. 

There is as yet no consistent methodology for using lightweight formal methods, 
nor for integrating  results from multiple methods. In  part  this is due to  the facts 
that ready customization to  a project’s immediate need drives the use of lightweight 
formal methods and  that results to  date  are primarily case studies. Some consid- 
eration of methodological guidelines would be useful, however, both  to make these 
approaches even more lightweight (easy to  apply) and to investigate whether op- 
portunities for reuse of application methods  (perhaps within the same domain) 
have merit.  In  addition,  studies of which lightweight approaches best provide sup- 
port specifically for safety analyses of evolving requirements, design revisions, and 
maintenance is needed. 

Integration  of  previously  distinct  formal  methods. Flexible use of multiple 
methods is another  step  in creating an open development environment. Different 
formal methods have different strengths, so being able to choose the best-suited 
tool for distinct  aspects or phases of a system without  additional modeling is  ben- 
eficial.  Work has been reported on the integration of theorem provers and model 
checkers, formal requirements toolsets  and  theorem provers, high-level languages 
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and  automatic verification, and  architectural description languages and theorem 
provers [Heitmeyer et al. 1998; Jagadeesan et al. 1995;  Mikk et al. 1998; Owre 
et al. 1996; Stavridou 19991. Clarke and Wing, et al., warn that  the successful 
integration of methods must both find a suitable  style and find a suitable meaning 
for using the different methods  together, or risk a joint result that is  no more useful 
than  the  separate views of the specification. [Clarke and  et al. 19961. 

The improved integration of informal and formal methods is significant for soft- 
ware system safety because it lets developers choose to specify or analyse  critical 
software components at a level of rigor they select. Formal methods allow demon- 
strations prior to  coding of crucial elements of the specification, e.g., that key safety 
properties always hold or that entry to  a certain  hazardous state always leads to  a 
safe state. 

An  additional  advantage of this  integration from the perspective of safety is that 
many formal methods have been used  for both  hardware and software specifica- 
tions. Lutz  has shown that critical software anomalies often involve misunder- 
standings  about  the software/system interface [Lutz and Wong  19921, the use of 
formal methods may help bridge the  gap  that often is created between the software 
and  the system developers. Executable specifications, especially those  with a front- 
end that  the user can  manipulate, allow exploration of assumptions and help elicit 
latent requirements that may affect safety. 

3.2 Constraints on safe  reuse  and  safe  product  families 

Two  areas  in which research in this  area is currently needed are safety analysis of 
product families and safe reuse of COTS. 

Safety  analysis  of  product  families. With  regard to  the first direction, the 
wish-list of the user community is quite ambitious. A recent workshop on product 
families stated as one of the major goals, “to certify a set of safety-critical systems 
at once.” One of the  stated goals of product line architectural analysis was “any 
analysis that can  be performed on the generic aspects that also applies to  all derived 
instances” [Clements and Weiderman 19981. To even  move towards  these goals, we 
need a much better understanding of the  extent  to which systems  with similar 
requirements can reuse requirements analyses. Clearly, it is the minor variations 
among the systems (requirements, environment, platform)  and the interactions be- 
tween these  variations that will be hardest to characterize, formalize, and verify 
in terms of safety effects.  Some initial work  by Lutz with safety-critical product 
families has identified some modeling decisions that can have safety consequences 
and derived some safety requirements [Lutz 20001. 

Safe  reuse  of COTS. With  regard to  the second item,  there are two problems. 
The first is, in McDermid’s words, “the need to better  understand to how retrospec- 
tively assess the  COTS product to determine its fitness for a particular  application” 
[Talbert 19981. He suggests that suppliers may soon provide a certificate that ef- 
fectively guarantees the behavior of a software component. In  addition, the system 
and  the environment (both original and  target) need to be understood sufficiently 
to  identify when software is being used outside the “operational envelope” for which 
it was originally designed and  tested  [Gardiner 19981. 

The second problem is not so much how to confirm that  the software does what 
it should, but how to confirm that  it does not do other  things as well. The prob- 



Software  Engineering for Safety: A Roadmap * 11 

lem of additional, unexpected behavior is an especial concern with safety-related 
COTS since there is a need for predictable, limited interactions and dependencies 
among components [Profeta et al. 19961. Rushby suggests that traditional meth- 
ods of hierarchical verification via functional refinement may be  inadequate and 
that notions of architectural notions of refinement may provide better verification 
[Rushby 19941. 

3.3 Testing and evaluation of safety-critical  systems 
This subsection of the paper describes four challenges to improved testing  and 
evaluation of safety-critical systems. 

Requirements-based testing. Better links are needed between safety require- 
ments and  test cases. This entails  both  tighter  integration of testing  tools  with 
requirements analysis tools (see, e.g., Knight  and Nakano 1997]), and improved 
testcase  generation for safety-related scenarios. 

An additional challenge is to  better  support evolutionary development that uses 
exploratory programming as its process model  [Sommerville 19961. Finkelstein in 
1994 identified as an open problem how to,  in  an unconventional development pro- 
cess, maintain a link between requirements and  the overall system development 
Finkelstein 19941. Similarly, traditional  hazard analyses assume that safety re- 
quirements are identified prior to implementation. However,  in the  actual develop- 
ment of many systems, safety requirements (e.g., constraints, user interfaces) are 
often derived primarily from testing of prototypes [Berry 19981. Knowledge of these 
new safety requirements then needs to  propagate in a predictable  manner to  later 
testing of the evolving product. Mechanisms for this  are currently lacking. 

Evaluation  from  multiple  sources. Parnas in 1990 stated  that  “the safety 
and  trustworthiness of the system will rest on a tripod made up of testing,  mathe- 
matical review, and certification of personnel and process [Parnas  et al. 19901.” The 
importance of combining evidence from multiple sources regarding the safety of a 
product is undisputed,  but how to  structure  and combine this  disparate information 
is still an open problem [Strigini 19941. 

An additional source of evaluation that must be considered is  field studies of 
deployed systems. Field data  are  important for requirements elicitation for subse- 
quent members of a product family,  for the maintenance required to  assure safety 
of an evolving product,  and for identification of realistic test scenarios. The follow- 
ing description of a pacemaker demonstrates how integral a field study can  be to  
the safety of a system: “Observing implanting sessions at hospitals showed us that 
doctors and nurses may  come up with numerous scenarios, some of which are diffi- 
cult to  foresee during system design. Unless we carry out a detailed field study at 
hospitals, we may not  be able to identify these scenarios. Missing  use scenarios can 
be  disastrous.  A problem may  go undetected,  and the device may fail in the field” 
[Tsai  et al. 19981. This  “product  in a process” assessment [Laprie and Littlewood 
19921 has  not yet been adequately  incorporated  into the  testing  and evaluation of 
safety-critical systems. 

Model  consistency. Mismatches betwen the  actual behavior of a system and 
the operator’s  mental model of that behavior are common, especially in complicated 
systems, and  are a contributor to hazardous states (e.g., mode confusion in pilots). 
Such discrepancies between actual (i.e., required) and expected behavior can  be 
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hard to discover in  testing. Rushby shows that by modeling both  the system  and 
the operator’s  expectation, a mechanized comparison of all possible behaviors of 
the two systems  can  be performed via formal models (here, the  state exploration 
tool Mur$ [Rushby 1999aI. Proposed changes to  remove the mismatches (e.g., 
improved displays) can also be run  through  the model  checker to  evaluate whether 
they remedy the problem. Rushby suggests that instruction  manuals for operators 
could be similarly modeled to  check their accuracy, and that  the number of states 
required for the mental model might provide a useful measure of the mental load 
placed on the  operator. 

Virtual  environments. The use of virtual environment (VE) simulations to 
help design, test,  and certify safety-critical systems is on the horizon, driven by 
enthusiasm of industrial users. As Cruz and Lutz have pointed out, methodologies 
to  support  the use of VE in testing, as well as standards for tool qualification 
of VE currently lag the market [Cruz-Neira and Lutz 19991. The centrality of 
human  factors and  the widely varying response of individuals to  a particular VE 
(e.g., some users experience disorientation  and nausea) complicate understanding 
of a VE’s fidelity to  the actual system. For software engineers, virtual environments 
offer a powerful means of integration and systems testing.  Their safe use in systems 
needs to  be further addressed. 

3.4 Runtime  Monitoring 

The use of autonomous software to  monitor and respond to  operational  activity is 
widespread. Such software can be used to enhance the safety of a system by d e  
tecting and recovering from (or masking) hazardous  states. This subsection briefly 
describes needed work to  detect  faults  and to return to  a safe state. It also describes 
work in profiling system usage to enhance safety analyses. 

Runtime monitoring is especially well-suited to  known, expected hazardous con- 
ditions. Detection of known faults  through  runtime monitoring can involve trade- 
offs between increased safety on the one hand and increased complexity, decreased 
availability, and decreased performance on the other  hand. As was seen earlier, the 
basis for these tradeoffs is usually informal and often unconscious. Requirements 
and  architectural analyses are needed that can help designers reason about these 
decisions. 

Detection of unexpected, hazardous scenarios is more difficult. The use of remote 
agents to  compare a system’s expected state with its sensed state  and request action 
if the difference is unacceptable offers promise in this field. For example, on the 
spacecraft Deep Space One, one part of the remote agent software is the Mode 
Identification and Reconfiguration system (MIR). MIR contains models describing 
the combinations of expected behaviors of the components in various situations. 
MIR also receives information from another system regarding what  activities are 
currently planned for the spacecraft and sensor data from the different components. 
MIR then compares the  actual  state of the spacecraft based on the sensor data 
to  the  state  it expects based on the models and  the planned activities. If MIR 
detects a mismatch, e.g., that unit A should be sending a signal (according to 
the plan), and  that unit A draws power  when it sends a signal (according to  the 
model), but  that unit A is not drawing power (according to  its sensor), it  then 
searches its models for a failure mode that matches the current sensor reading. This 
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diagnosis, together with a recommendation for  recovery action, is then available to  
the executive software [Northwestern University’s Qualitative Reasoning Group 3 .  

Runtime monitoring to  profile usage has been used most widely to  guide main- 
tenance or ensure survivability (e.g., against hacker attacks). However, runtime 
monitoring techniques can also support safety in several ways. Profiling system 
usage can identify evolving conditions that may threaten  the system, deviations 
from safety requirements, and  operational usage that is inconsistent with the safety 
assumptions.  Feather, Fickas, van Lamsweerde, and  Ponsard, for example, com- 
bine runtime monitoring with goal-based reasoning about requirements (which can 
include safety requirements) and  strategies for reconciling deviations of the runtime 
behavior from the requirements [Feather et al. 19981. Such an approach may be 
particularly useful  for systems with reusable components (see discussion above) or 
evolvable, self-adapting architectures. 

3.5 Education 
Few courses are currently offered in universities on the software engineering of 
safety. At the  graduate level, the courses are often part of the master’s of software 
engineering curriculum in programs for practitioners. The focus of such courses 
thus  tends to  be methodological (e.g., how to perform an FMECA)  rather than 
scientific. As discussed below, many of the advances in software engineering for 
safety will  come from developments in  related  areas.  There is a need for courses in 
safety that build on prior education  in  fault tolerance, security, systems engineering, 
experimental techniques, and specific application domains. 

At the  undergraduate level, student exposure to safety-critical systems is mini- 
mal. Despite extensive media coverage of software hazards (Y2K, transportation 
and communication disasters, etc.), the notion that one’s  own software might jeop- 
ardize a system, much less a life,  is  novel to  many students.  Three  partial remedies 
are as follows: (1) There is a need  for casebased learning modules to encourage 
a systems  approach to  software safety (along the lines of Pfleeger’s  use of Ariane 
5 as a case study in [Pfleeger 19981 or the Dagstuhl case studies in [Abrial et al. 
1996; Borger et al. 19991). (2) A  textbook on software engineering for safety is 
needed (currently Storey’s is the only textbook with problem sets [Storey 19961). 
(3) Wider use of popular accounts of accidents and their causes (e.g., [Neumann 
; Neumann 1995; Peterson 1995; Petrowski 19921) in software engineering courses 
will reinforce the notion that software can  contribute to hazards. 

3.6 Collaboration with Related  Fields 
Progress  in software engineering for safety can leverage advances in related fields. 
This subsection briefly presents prroblems in four related fields  whose solutions have 
potential benefits for safety. The inverse topic, i.e., advances in software engineering 
for safety that may be useful to  other fields, can  be inferred from the discussion, 
but is not explicitly addressed here. 

Security and survivability. Ties between safety and security have begun to  
be explored as offering productive ways to reason about  and design safe systems. 
As Berry  noted,  “There is a whole repertoire of techniques for identifying and 
analyzing security threats,  and these are very similar in  flavor to  the techniques 
used for identifying and analyzing system hazards” [Berry 19981. Examples include 
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anomaly-based intrusion  detection; noninterference and  containment  strategies; se- 
curity kernels; coordinated responses to attacks (faults); and  robust, open-source 
software [Neumann ; Rushby 19941. Sullivan, Knight, Du, and Geist [Sullivan et al. 
19991 have recently demonstrated survivability hardening of a legacy information 
system by a wrapping technique that allows additional control (e.g.,  for  reconfigu- 
ration). 

Sofiware  architecture. The relationships between architectural attributes  and 
safety are still largely undefined. Four problems of particular  interest are  the fol- 
lowing: (1) The safety consequences of flexible and  adaptable architectures (e.g., 
using integrated systems for in-flight reconfiguration) [Stavridou 19991; (2) Evalua- 
tion of architectures for safety-critical product families [Gannod and Lutz  tted]; (3) 
Partitioning to control hazards enabled by shared resources pushby 1999bl;; and 
(4) Architectural solutions to  the need described by Neumann as “techniques that 
augment the robustness of less robust components [Neumann 1 .  For example, when 
a safety-critical system is built using  legacy subsystems or databases, an operating 
system with known failure modes, and  COTS components from multiple sources, 
architectural  analysis offers an avenue for safety analysis of the integrated system. 

Theoretical  computer  science. The report put  out by a recent NSF-sponsored 
Workshop on Research in  Theoretical  Computer Science identifies “Safe and Veri- 
fiable Software” as one of five areas  in which theoretical  computer science can help 
meet the technological challenge [nsf 19991. Specifically, advances in model checking 
and in logics of programs can improve the capabilities and performance of formal 
specification and verification methods. 

Human factors  engineering. Human factors engineering is another area in 
which both additional research and  additional assimilation of existing results are 
needed. Better  understanding of usage patterns, based on field studies,  and formal 
specification of operator’s  mental models can yield more accurate safety require- 
ments and safer maintenance. One of the ways that we can avoid past mistakes is 
by cataloging them in such a way that future users take note. A technique that 
merits extension to other domains is  Leveson’s list of design features  prone to  caus- 
ing operator mode awareness errors [Leveson et al. 19971. The items in such a list 
can be included in checklists for design and code inspections, investigated in formal 
models, or used in testcase generation. 

3.7 Other Areas 

Several important  areas have  been excluded from discussion here due  to space lim- 
itations. For example, domain-specific designs for fault  tolerance  can  contribute 
significantly to  safe systems. Advances  in operating systems (support for real-time 
safety-critical applications), programming languages (safe subsets of languages, 
techniques relating programming languages to specification languages and natu- 
ral languages), and temporal logics (reasoning about  critical  timing  constraints) 
are  other  areas  important to  safety. The reader is referred to  [Alur and Henzinger 
1991; Cullyer et al. 1991; Gunter et al. 1996; Sifakis 1996; Zave 19971 for discussions 
of these topics. 



Software  Engineering  for  Safety: A Roadmap * 15 

4. CONCLUSION 
This  report  has described the current state of software engineering for safety in 
several key areas  and presented directions for future work to  improve these  areas. 
In summary, the  future seems to offer (1) continued exploitation of advances in 
related fields in order to build safer systems, and (2) better  integration of safety 
techniques with industrial development environments. 
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